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We calculate the optical sum associated with the in-plane conductivity of a graphene bilayer. A bilayer
asymmetry gap generated in a field-effect device can split apart valence and conduction bands, which other-
wise would meet at two K points in the Brillouin zone. In this way, one can go from a compensated semimetal
to a semiconductor with a tunable gap. However, the sum rule turns out to be “protected” against the opening
of this semiconducting gap, in contrast to the large variations observed in other systems where the gap is
induced by strong correlation effects.
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I. INTRODUCTION

Sum rules on the conductivity have played an important
role in the analysis of optical-conductivity data, which give
information on electron dynamics. In its simplest form, for
an infinite free electron band, the sum rule gives the plasma
frequency which is independent of temperature, interactions,
and impurity scattering.1,2 In tight-binding models, it is re-
lated to the second derivative with respect to the momentum
kx,y of the band dispersion �k times the probability of occu-
pation of the state �k�.1,2 In the special case where only
nearest-neighbor hopping is present on a square lattice, the
sum-rule integral reduces to negative one-half the kinetic en-
ergy in appropriate units. As a consequence, in general, it is
affected by the interactions present in the system, and these
determine both its absolute value and its variations with tem-
perature. This fact has been investigated recently both ex-
perimentally and theoretically in the context of high-Tc cu-
prate superconductors �see Refs. 1 and 2 for a review�. It
follows from the Sommerfeld expansion that the relative
temperature variation of the sum-rule integral in noninteract-
ing tight-binding models is proportional to �T / t�2, where t is
the nearest-neighbor hopping. In the experiments done in the
normal state of cuprates, the temperature variations of the
sum rule are much larger than this estimate and in some
cases, deviate from a simple T2 law. The discrepancy can be
attributed to correlation effects. For example, in the studies
of the Hubbard or t-J model,3,4 a new energy scale emerges
associated with the reduced width of the renormalized band.
This parameter replaces the hopping parameter t in the �T / t�2

dependence leading to its enhancement. It is shown in other
theoretical approaches that the sum-rule integral measures
instead a specific average of the quasiparticle lifetime5–8 nor-
malized to the Fermi energy �F, and hence such optical ex-
periments ultimately probe correlation effects through life-
time broadening. These examples illustrate that optical data
can provide important insight into correlation effects.

Graphene, which is a single layer of graphite, has recently
been isolated and its properties investigated �see Ref. 9 for a
review�. Bilayer graphene10 and thicker graphite films are
also now widely produced. Since graphene possesses truly

remarkable properties both from the technological and theo-
retical points of view, there has already been considerable
work done on monolayer and bilayer graphene and also on
related materials. In particular, recent data are available on
the ac conductivity in the infrared region of graphite,11,12

several layer epitaxial graphite,13 and on monolayer14 and
bilayer15 graphene. There has also been much theoretical
work on the microwave and infrared conductivity of
graphene16–18 �see Ref. 19 for a review� and on a bilayer20–22

and multilayer.18,23 Thus, it is of interest to anticipate some
general results on the optical-conductivity sum-rule behavior
of these systems, which are likely to be tested experimentally
in the near future. The optical sum rules for the �in-plane�
longitudinal and Hall conductivities were studied for mono-
layer graphene in Ref. 24, where the unusual dependences of
the sum rules on temperature and chemical potential were
revealed. For example, at the neutral Dirac point, the linear
dispersion law of quasiparticles leads to a T3 dependence of
the sum rule, instead of the T2 law found in tight-binding
bands.1,2

A specific and very useful feature of graphene, not avail-
able in ordinary metals, is that it is possible to change the
chemical potential � and thus the number of carriers by tun-
ing the gate voltage Vg �Vg��2 for monolayer graphene� in a
field-effect device. It was shown24 that in the limit T=0, the
concentration-dependent part of the sum rule goes like
���� / t�3. For a finite temperature T� ���, there is a tempera-
ture dependent correction to the sum of order ���� / t��T / t�2

which is very much as in the more ordinary T2-law case
discussed above.

In this paper, we generalize the previous work to the case
of bilayer graphene. In the case considered most often, a
bilayer graphene consists of two coupled hexagonal lattices.
The inequivalent sites A1, B1 and A2, B2 on the bottom and
top graphene sheets are arranged according to Bernal �A2-
B1� stacking: every B1 site in the bottom layer lies directly
below an A2 site in the upper layer. The strongest interlayer
coupling between pairs of A2-B1 orbitals �1 changes the
electron dispersion from a linear to a quadratic form.21,25 In
addition to this effect, bilayer graphene is the only known
material in which the electronic band structure can be
changed significantly simply by applying an electric field
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perpendicular to the layers.9 Indeed, while the unbiased bi-
layer system is a semimetal, with parabolic valence and con-
duction bands touching each other at the neutrality point, the
system becomes a semiconductor when the two layers are
electrostatically inequivalent. The corresponding semicon-
ducting gap � between valence and conduction bands is tun-
able continuously from zero to �0.2 eV.9,26,27 As shown ex-
perimentally, the asymmetry gap � and the carrier
concentration can be controlled independently through an ap-
plied gate voltage and chemical deposition of potassium or
other atoms on the vacuum side of the structure.26,27 Re-
cently, similar results have also been obtained in a double-
gated structure made of bilayer graphene sandwiched in be-
tween two gate electrodes.28 This effect has been understood
by means of both tight-binding calculations26,29,30 and
ab initio calculations.31

Beyond the clear potential impact that this effect has on
device applications, it is extremely interesting from the the-
oretical point of view to understand how this field-induced
band transition will affect the conduction properties of the
system. In light of the previous discussion concerning the
physics of cuprates, one could ask if the opening of the gap
due to the metal-insulator transition in the Hubbard-like
models, or across the metal-superconductor transition in su-
perconducting models, shares commonality with the physics
of bilayer graphene. As we shall demonstrate below, these
phenomena are drastically different. Indeed, we show that
the sum rule is essentially protected against the opening of
the semiconductor gap in this bilayer system. Despite the
fact that � can be as big as a significant fraction of the Fermi
energy, the relative sum-rule changes from the unbiased to
the biased system are of order of 10−3. Thus, even though a
general redistribution of spectral weight is expected due to
the opening of the gap, the total sum rule is practically con-
stant. One would have expected the large band-structure
changes involved to lead to corresponding significant
changes in the optical sum. Here, however, we show that this
is not the case. The relative changes in optical spectral
weight induced by the opening of the gap must largely com-
pensate each other, leaving the total weight almost un-
changed.

II. DERIVATION OF THE SUM RULE

For a generic electronic model described by the Hamil-
tonian H, the optical-conductivity sum rule is given by1,2

W�T� = �
−�

�

Re 	xx�
�d
 =
�e2

V
��xx� , �1�

where V is the unit-cell volume and �xx is the so-called mass
tensor, which appears in the second-order expansion of H
evaluated at finite vector potential A,

H�A� � H�0� − �
n,
=x,y

	 e

c
A
�n�j
�n� −

e2

2c2A

2�n��

�n�
 ,

�2�

and j
 is the current density in the 
 direction. The vector
potential A is introduced in the tight-binding Hamiltonian

�Eq. �3�� written below by means of the Peierls substitution,
a2n

+ b2n+��→a2n
+ exp�− ie

�c
n+��
n Adr�b2n+��. Here, a2n and

b2n+�� are the Fermi operators of electrons on A2, B2 sublat-
tices of the second layer. �Note that this Peierls substitution
corresponds to the second layer; for the first layer, it is simi-
lar. The spin label is omitted.� The positions of A2 and B1
atoms are denoted as n and they are connected to their near-
est neighbors on B2 �A1� sites by the three vectors �� ���.
Accordingly, the general tight-binding Hamiltonian for a bi-
layer reads

H = − t�
n,�

�a1n+�
+ b1n + H.c.� − t�

n,��

�a2n
+ b2n+�� + H.c.�

+ �1�
n

�a2n
+ b1n + H.c.� + �3 �

n,��

�a1n
+ b2n+�� + H.c.�

−
1

2
��

n
�a1n+�

+ a1n+� + b1n
+ b1n − �1 → 2�� , �3�

where t is the in-plane hopping parameter and �1 the stron-
gest interlayer coupling. When �=0, this Hamiltonian is
equivalent to the Slonzewski–Weiss–McClure model32,33 for
the bulk graphite, provided that one retains only in-plane and
�1 out-of-plane hoppings, and assumes no dispersion along
the c axis �perpendicular to the planes�.34 As mentioned
above, the connected sites A2 and B1 lie directly below and
above each other, so that the magnetic field perpendicular to
the bilayer does not affect this coupling. This is not the case
for the weaker A1-B2 coupling �3 included in the Hamil-
tonian �Eq. �3�� for completeness. In what follows, however,
we will neglect this term, whose role is negligible as far as
the longitudinal optical sum rule is concerned. Finally, the
parameter � represents the asymmetry of the on-site energies
on the two layers, and it is induced by the electric field
applied perpendicular to the graphene bilayer. As we shall
see below, it is responsible of the splitting of the valence and
conduction bands.

The Hamiltonian �Eq. �3�� describes four bands,21,25,26,30

��
�
��k�, 
=1,2, with

��
�
��k� = ���1

2

2
+

�2

4
+ ���k��2 + �− 1�
� ,

� =��1
4

4
+ ���k��2��1

2 + �2� , �4�

where the function ��k�=−t��i
eik�i =−t��i�

e−ik�i�. By expand-
ing ��k� around the two inequivalent K ,K� points in the
Brillouin zone, one gets the usual linear dependence, ���k��
��vF�k�, where the wave vector k is measured from K
points and vF=�3ta / �2�� is the Fermi velocity, with a the
lattice constant �V=�3a2 /2�. Using this form, one can easily
see from Eq. �4� that at large momenta the four bands repro-
duce the two Dirac cones, ���

�
��=�vFk��p� of each un-
coupled layer. The low-energy band dispersion is, however,
drastically affected by the interplane hopping �1 and the
asymmetry parameter �. Indeed, at �=0 for ���

�1����1 /4, the
two low-energy bands are parabolic with the dispersion ��

�1�
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� ��2k2 /2m, where the effective mass m=�1 / �2vF
2�, and

touch each other as in a semimetal �see Fig. 1�a�, where we
used t=3.1 eV and �1=0.4 eV �Refs. 26 and 30��. However,
when ��0, the system becomes a semiconductor with a gap

�̃=��1 /��1
2+�2 at the momentum pm /�vF, which corre-

sponds to the energy pm
2 = ��2 /2���1

2+�2 /2� / ��1
2+�2� �see

Fig. 1�b��.
Although the linear approximation for ��k� is sufficient

for the analysis of the low-energy band structure and for the
numerical study of the mass tensor �Eq. �9�� below, the deri-
vation of this tensor must be done using an unexpanded ex-
pression for ��k�.24 It follows from the definition �Eq. �2��
that �the factor 2 accounts for the spin�

�xx =
2

�2N
�
k
	�a1k

+ b1k + a2k
+ b2k�

�2�*�k�
�kx

2 + H.c.
 , �5�

where we kept the full momentum dependence of ��k� �N is
the number of unit cells�. The thermal average ��xx� is calcu-
lated from the imaginary time Green’s function �GF�
G=−�T���+�, where we introduced �+= �a1k

+ ,b2k
+ ,a2k

+ ,b1k
+ �.

Then, the averages �a1k
+ b1k� and �a2k

+ b2k� are

�a1k
+ b1k� = T�

i
n

e−i
n0+
Ĝ41�i
n,k� ,

�a2k
+ b2k� = T�

i
n

e−i
n0+
Ĝ23�i
n,k� , �6�

where i
n is the fermionic Matsubara frequency. The corre-

sponding elements Ĝ41 and Ĝ23 of the GF Ĝ can be found
from the inverse GF,21

Ĝ−1�i
n,k� =�
z + 1

2� 0 0 − �*�k�

0 z − 1
2� − ��k� 0

0 − �*�k� z − 1
2� − �1

− ��k� 0 − �1 z + 1
2�
� ,

�7�

with z= i
n+�. Then,

Ĝ41�i
n,k� =
��k��− ���k��2 + ��/2 − z�2�

�z2 − ���1��2��z2 − ���2��2�
, �8�

and Ĝ23= Ĝ41�−��. Calculating the Matsubara sum in Eq. �6�
and using the identity ��k���2�*�k� /�k


2�+c.c.
=−�a2 /3����k��2, we finally obtain

��xx�
V

= −
2a2

3�2VN
�

k,�=�,

���k��2f����

�
��k� − ��M���
�
��k��� ,

�9�

where

M���
�
��k�� = 	1

2
+ �− 1�


�1
2 + �2

4�

 1

��
�
��k�

, �10�

and f���=1 / �exp�� /T�+1� is the Fermi distribution. One can
verify that for �1=�=0, Eq. �9� reduces to the doubled one-
layer sum of Ref. 24.

The expression �Eq. �9�� does not show any clear formal
resemblance to the kinetic-energy density of the bilayer sys-
tem, which one would define using the bands �Eq. �4�� as

K =
2

VN
�

k,�=�,

��

�
��k�f���
�
��k� − �� . �11�

Nonetheless, as we shall see, these two quantities show ap-
proximately the same doping dependence, satisfying again
the general relation between sum rule and kinetic energy,
despite the complicated band evolution with doping of the
bilayer system.

III. SUM RULE AS A FUNCTION OF DOPING

As we already mentioned, it was shown
experimentally26–28 that one can tune independently the
asymmetry gap � between the two layers and the total carrier
density �the value of ��. This corresponds to controlling the
excess carrier density n1,2 �difference between the densities
of electrons and holes� in each layer, as schematically shown
in Fig. 1�c�. The charge on the surfaces below the bottom
layer and above the top layer is ng and n0, respectively. In the
experimental configuration of Ref. 26, ng is varied by chang-
ing the gate voltage and n0 by chemical deposition of dop-
ants on top of the upper layer �see also Ref. 27�, while in the
device of Ref. 28, both n0 and ng are varied by using two
independent gates. The resulting asymmetry � between on-
site energies in the two layers can be determined by equating
the voltage difference � /e between the plates of the
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FIG. 1. �Color online� Top: bilayer band dispersion for �a�
�=0 and �b� �=0.4 eV as a function of p��vFk. Bottom: general
scheme of the experimental setup for a tunable-gap bilayer device
�notation defined in the text�.
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capacitor to its value evaluated from the charge density
e�n0+n2−ng−n1�,21,26,30

� =
e2d

2�0
�n0 + n2��� − ng − n1���� =

n0ed

�0
+

n2���ed

�0
.

�12�

Here, d is the bilayer thickness, �0 is the permittivity of free
space and in the last equality, we used that the total carrier
excess n=n1+n2=−�n0+ng�. Since n1��=0�−n2��=0�=0,
we obtain that �=0 at n=−2n0. The gap closes when the
system is doped away from half-filling, as indicated by the
angle resolved photo emission spectroscopy �ARPES� mea-
surements of Ref. 27. However, if the value of n0 is tuned to
be exactly at zero,28 the gap closes exactly at the neutrality
point, where the semimetal band structure is reproduced. For
finite �, the excess carrier densities n1,2 are given by

n1��,�� =
1

NV�
k,


�f��+
�
��k� − �� − f��+

�
��k� + �� + g�
��k�

��f��−
�
��k� − �� − f��+

�
��k� − ���� , �13�

where g�
��k�= �� /�+
�
��k���1 /2+ �−1�
���k��2 /�� and

n2�� ,��=n1�−� ,��. To determine self-consistently the de-
pendence � on n, one has to solve simultaneously Eq. �12�
and the equation n1�� ,��+n2�� ,��=n for the chemical po-
tential �. Once ��n� and ��n� are determined, one can com-
pute ��xx� and K as a function of n.

Following Ref. 27, we use d=3.4 Å and show results for
n0=0 and n0= �12�1012 cm−2. This choice is suggested by
the fact that in the measurements of Ref. 27, the gap closes at
n=−2n0 given approximately by 24�1012 cm−2 �notice that
n expressed in units of 1012 cm−2 corresponds to
1.9�103nuc, where nuc is the number of electrons per unit
cell nuc�. The doping dependence of the ��xx� at T=0 is
shown in Fig. 2. As one can see, even though the charging
gap � changes consistently with doping �see the inset of Fig.
2�, due to the screening effects of the bilayer device, none-
theless the sum rule attains overall variations of �0.1%,
which are undetectable from an experimental point of view.
In other words, despite the large optical-conductivity
spectral-weight redistribution associated with the opening of
the gap through the semimetal-semiconductor transition in-
duced by doping, the sum rule is not affected. It follows the
same behavior that one would obtain in �electrostatically�
uncoupled layers where �=0 at all doping �see the
dashed-dotted line in Fig. 2�. In the regime where the
gap is relatively small �for example, at negative doping for
the n0=12�1012 cm−2 curve in Fig. 2�, the sum rule
follows approximately the same doping dependence
found in the single-layer case, i.e., ��xx�n�−�xx�0�� /V
�−2a2���3 / �9��2vF

2�. Since 2a2 / �9��2vF
2��10−2 eV−2 and

���3 has an overall variation of at most 0.1 eV3 in the con-
sidered doping range, one can easily get the small sum-rule
variation with doping. At larger gap values, �xx�n�−�xx�0� is
slightly larger than expected in the single-layer case, but it is
still too small to be detected experimentally. As far as the
temperature dependence is concerned, we always found a
�T / t�2 variation, as expected due to the parabolic structure of

the low-energy bands. Including other hoppings such as �3 in
the Hamiltonian �Eq. �3�� can change the dispersion curve as
discussed in Ref. 29 �see also Ref. 34� for energies less than
2 meV. While this can slightly affect the overall value of the
optical integral and of the self-consistent �, it does not
change the main conclusion of our calculation, which focus
on the relative doping changes of the sum rule when a large
semiconducting gap � of order of a few hundreds of meV is
opened. Having established that the relatively large band-
structure changes caused by the opening of the gap � lead to
a negligible changes in the optical sum, we expect that the
above mentioned hopping terms introduce negligible correc-
tions as well.

Analogously, the kinetic energy, shown in Fig. 3, is not
much affected by the opening of the gap, and it attains a
value which is approximately six times the sum rule,
� /V��1 /6��K�. There are, however, two differences in the
doping dependence of the sum rule with respect to the ki-
netic energy. First, we notice that the very small changes in
the sum rule and kinetic energy have the opposite trend:
indeed, they both decrease when the gap opens, in contrast to
what is found, for example, at the transition between a nor-
mal metal and a superconductor, where a kinetic-energy in-
crease corresponds to a sum-rule decrease and vice versa.
This effect disappears when we set �1=�=0 in our numeri-
cal work: indeed, in this case, �xx reproduces exactly twice
the single-layer value computed in Ref. 24, and the sum rule
and the kinetic-energy track each other exactly as the doping
is varied. Second, it is clear from Fig. 3 that the chemical-
potential jump at the neutrality point in the biased case �see
inset �b� of Fig. 3� is much more effective on the kinetic-
energy doping dependence. The two curves for �K� at n0
= �12�1012 cm−2 in Fig. 3 show a kink at n=0 which is
clearly due to the ��n� discontinuity at the neutrality point.
Indeed, in the case where no gap is present in the system,
��n� goes smoothly across n=0, as does the kinetic energy.
Instead, the sum-rule curves in Fig. 2 are not much affected
by the � discontinuity at n=0.
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IV. CONCLUSIONS

In summary, we investigated the behavior of the optical
sum in bilayer graphene as a function of charge imbalance
carrier density n and temperature. While a small temperature
variation could be expected because of the relatively small
effect of temperature on the electronic excitations, the negli-
gible dependence of the sum rule on the carrier density was
not a priori expected. Indeed, despite the profound band-
structure changes induced by the change of doping, no sig-
nificant signature appears on the overall spectral weight. This
implies that the spectral weight lost in the gap must appear
above it, and the two must largely compensate for each other.
Observe that in order to be able to test experimentally such a
prediction, one would need to define an “experimental” cut-

off. Indeed, even though the relation �Eq. �1�� is theoretically
established by integrating the optical conductivity to all fre-
quencies, in practice, an intrinsic cutoff is provided by the
frequency 
c above which transitions to other electronic
bands not considered in the present study would develop.2

According to optical studies on graphite,35 the optical sum
rule saturates to the value corresponding to one electron per
atom �as due to the � band considered here� around 8 eV,
while optical transitions coming from the 	 bands appear
around 15 eV. However, in the present case, a much smaller
cutoff could be used, if one wants just to compare the
spectral-weight variations induced by the opening of the gap.
Indeed, the spectral-weight redistribution is expected to fall
in a range of frequencies of order 2�, as confirmed recently
in Ref. 22. Thus, an upper cutoff of order of 
c�1–2 eV
should be enough to account for the gap-opening effects and
to test experimentally the predicted robustness of the optical
sum rule.

It is worth noting that in our calculation, only the electro-
static interaction between layers was included, since this is
believed to be the most important effect in the system. How-
ever, as in the case of cuprate superconductors, other mecha-
nisms �electron repulsion or electron-phonon interactions�
could be at play and modify the sum rule. Thus, the experi-
mental verification of our prediction would help for under-
standing if other interactions need or need not be taken into
account in dealing with these systems.
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